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Abstract 
 
The paper deals with the PAM manipulator modeling and identification based on autoregressive recurrent neural 

networks. For the first time, the most powerful types of neural-network-based nonlinear autoregressive models, namely, 
NNARMAX, NNOE and NNARX models, will be applied comparatively to the PAM manipulator identification. Fur-
thermore, the evaluation of different nonlinear neural network auto-regressive models of the PAM manipulator with 
different number of neurons in hidden layer is completely discussed. On this basis, the merits of each identified model 
of the highly nonlinear PAM manipulator have been analyzed and compared. The results show that the nonlinear 
NNARX model yields better performance and higher accuracy than the other nonlinear NNARMAX and NNOE 
model schemes. These results can be applied to model and identify not only the PAM manipulator but also to control 
other nonlinear and time-varying industrial systems. 

 
Keywords: Pneumatic artificial muscle (PAM) manipulator; Autoregressive recurrent neural networks; NNARMAX model; NNARX 

model; NNOE model; Modeling and identification 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

 
1. Introduction 

PAM actuators have been used in various precision 
robotic tasks as well as in human exoskeletons for 
enhancement of strength and mobility [1]. Due to 
their highly nonlinear and time-varying parameter 
nature, PAM manipulator modeling always presents a 
challenging problem that has been approached via 
many methodologies as follows. In [2], an antagonis-
tic PAM pair that actuates a leg-like swinging pendu-
lum was modeled and simulated in the lab In [3], a 
back-stepping controller using fuzzy model to deter-
mine valve status was designed for a simulation of a 
PAM hanging vertically in the lab. In [4], a fuzzy 
model reference learning controller was designed for 
a single PAM hanging vertically actuating a mass in 
the lab. In [5], the simulation considers PAM be 
modeled individually in both bicep and tricep posi-

tions. Recently, in [6], the authors applied a modified 
genetic algorithm for optimizing parameters of linear 
ARX model of the PAM manipulator. In [7], the au-
thors successfully identified the PAM manipulator 
based on nonlinear neural NNARX model. All these 
results prove that up to now, a more efficient model 
for the PAM manipulator is needed, which is utilized 
not only in simulation but also in control of such 
highly nonlinear systems like PAM manipulator. 

The problem of structure identification for highly 
nonlinear systems has received much attention in 
recent years, in particular for polynomial NARX, 
NARMAX and NOE models. Several methods and 
algorithms have been introduced with the aim of find-
ing the best structure in a given model family without 
having to perform a parameter estimation for all pos-
sible structures [8-12]. In this paper, auto-regressive 
recurrent neural networks are applied to model and 
identify the PAM manipulator system. A PAM ma-
nipulator test system was designed. The contribution 
focuses on carrying experimental modeling and ana-
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lyzing from gathered results the advantages of PAM 
manipulator identification using neural networks with 
different auto-regressive structures and different hid-
den layer nodes as well. Modeling results of the com-
plex dynamic systems such as PAM manipulator 
show that the newly proposed nonlinear model pre-
sented in this paper can be applied in online control 
with better dynamic property, strong robustness and 
suitability for the identification of various plants, 
including linear and nonlinear processes without re-
gard to the greatly changing external environments. 

This paper is organized as follows: Section 2 gives 
a description of basic characteristics of PAM. In sec-
tion 3, the procedure of modeling and identification of 
the PAM manipulator based on auto-regressive recur-
rent neural network is presented. Section 4 shows the 
hardware setup for the PAM manipulator identifica-
tion. Section 5 presents the results of modeling and 
identification of the PAM manipulator based on auto-
regressive recurrent neural network. Section 6 is the 
conclusion. 
 

2. Basic characteristics of pneumatic artificial 
muscle (PAM) 

The basic mechanical characteristics of PAM can 
be depicted with the equation below: 

 
2[ (1 ) ]F P a h b= − −   (1) 

 
where F is contraction force, P is the internal pressure 
(bar), h is contraction rate. a and b are constants re-
lated to the structure of PAM. This highly nonlinear 
feature is shown in Fig.1 extracted from [13] repre-
senting the relationship of the contraction rate h and 
the exerting force F of a PAM. 

Eq. (1) indicates that F, P and h are three critical 
variables to determine the characteristics of PAM. 
When P is constant, F is nonlinear with respect to h. 

 

 
 
Fig. 1. h -F relationships of PAM (extracted from (FESTO, 
2005)). 

Meanwhile, due to the friction and wire resistance 
between rubber tubes and mesh shell, PAM has the 
characteristics of lag. Fig. 1 illustrates the ε-F rela-
tionships of artificial muscle. In this figure, the curves 
tell us that PAM is substantially a time-varying and 
nonlinear system. Thus, in order to overcome the 
disadvantages of nonlinearity and lag characteristics 
of PAM, an autoregressive recurrent neural network 
model is applied for identifying the PAM manipulator 
system. 
 

3. Nonlinear autoregressive neural-networks-
based pam manipulator identification 

3.1 Description of nonlinear autoregressive model 

The nomenclature of a nonlinear dynamical model 
is based on the terminology used to categorize linear 
input-output models. The linear empirical model 
structures can be summarized by the general family 
[14]. 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )B q C q
A q y k u k e k

F q D q
= +   (2) 

where, q denotes the shift operator. For instance, A (q) 
is a polynomial in q-1. This model can be given in a 
“pseudo-linear” regression form 

 

( )ˆ Ty Q X k=  
 

where the regressors, i.e., the components of X (k) can 
be given by: 

• u (k-i), i=1,…nb, control signals (associated with 
the B polynomial) 

• y (k-i), i=1,…na, measured process outputs (asso-
ciated with the A polynomial) 

• ( )ˆ ,y k i− simulated outputs from past u (k) (asso-
ciated with the F polynomial) 

• ( ) ( ) ( )ˆ ,e k i y k i y k i− = − − − prediction errors 
(associated with the C polynomial) 

• ( ) ( ) ( )ˆ ,u ue k i y k i y k i− = − − − simulation errors 
(associated with the D polynomial) 

Based on these regressors, different types of model 
structures can be constructed. Equation (2) can be 
called as the Box-Jenkins (BJ) model (A=1), the 
ARMAX model (F=D=1), the output-error (OE) 
model (A=C=D=1) and the ARX model (F=C=D=1). 
From this nomenclature of linear models, similar 
nonlinear models can be constructed as follows: 

1)  NNARX, Nonlinear AutoRegressive with eX-
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ogenous input models, which used regressors as: 
( ) ( ) ( ) ( )( ) 1 ,..., , 1 ,...,a bX k y k y k n u k u k n⎡ ⎤= − − − −⎣ ⎦  

2)  NNOE, Nonlinear Output Error Models, which 
used regressors as 

( ) ( ) ( ) ( )ˆ ˆ( ) 1 ,..., , 1 ,...,a bX k y k y k n u k u k n⎡ ⎤= − − − −⎣ ⎦  

3)  NNARMAX, Nonlinear AutoRegressive Moving 
Average with eXogenous input models, where 

( ) ( ) ( )
( ) ( ) ( )

( ) 1 ,..., , 1 ,...,

, 1 ,...,

a

b u u e

X k y k y k n u k

u k n k k nε ε

⎡= − − −⎣
⎤− − − ⎦

 

On the soft computing and system identification of 
nonlinear systems, the NNARX model is called a 
series parallel model, while the NNOE is referred to 
as a parallel model. The NNARMAX and NNOE 
models are recurrent models, because they use the 
estimated output that constitutes a feedback. This 
makes the identification of these models difficult. 
Because the NNARX model structure is non-
recursive, its parameters are easy to estimate. To pre-
sent a dynamic system, after making some moderate 
assumptions, it has been proved that any nonlinear, 
discrete, time-invariant system can always be repre-
sented by an NNARX model [15]. 

 
3.2 Description of multilayer perceptron network 

system and BP learning algorithm 

The multilayer perceptron (or MLP) network is 
probably the most-often considered member of the 
neural network family, mainly because of its ability to 
model simple as well as very complex functional 
relationships. This has been proven through a large 
number of practical applications. A fully connected 
two layer feed-forward MLP-network with 3 inputs, 2 
hidden units (also called “nodes” or “neurons”), and 2 
outputs units is shown in Fig. 2(a). 

The class of MLP-networks considered in this pa-
per is furthermore confined to those having only one 
hidden layer with sigmoid activating functions (f, F) 
used in hidden and output layer, respectively. The 
predictive output value is derived from Fig. 2(a): 

 

0
1

0 0
1 1

ˆ ( , ) ( )

.

q
i i ij j i

j

q m
i ij j jl l j i

j l

y w W F W h w W

F W f w z w W

=

= =

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= + +

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑

∑ ∑
(3) 

 

 

Fig. 2(a). Structure of feed-forward MLP-network 

 
 
Fig. 2(b). Procedure of PAM manipulator modeling and 
identification. 

 
The weights (specified by the vector θ, or alterna-

tively by the matrices w and W) are the adjustable 
parameters of the network, and they are determined 
from a set of examples through the process called 
training. The examples, or the training data as they 
are usually called, are a set of inputs, u(t), and corre-
sponding desired outputs, y(t). 

Specify the training set by: 
 

{ }( ), ( ) 1,...,NZ u t y t t N= =⎡ ⎤⎣ ⎦   (4) 

 
The objective of training is then to determine a 

mapping from the set of training data to the set of 
possible weights: ˆNZ θ→  so that the network will 
produce predictions ˆ( )y t , which in some sense are 
“closest” to the true joint angle outputs y(t) of PAM 
manipulator. 

The prediction error approach, which is the strategy 
applied here, is based on the introduction of a meas-
ure of closeness in terms of a mean sum of squared 
error (MSSE) criterion: 
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( )
1

1 ˆ ˆ, ( ) ( ) ( ) ( )
2

N TN
N

t
E Z y t y t y t y t

N
θ θ θ

=
⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑  (5) 

 
Based on back-propagation (BP) training algo-

rithms, the weighting value is calculated as follows: 
 

( )
( )

( )
( 1) ( )

E W k
W k W k

W k
λ

∂
+ = −

∂
  (6) 

 
with k is kth iterative step of calculation and λ is learn-
ing rate which is often chosen as a small constant 
value. 

Concretely, the weights Wij and wjl of weighting 
vector θ  of recurrent neural model are then updated 
as: 

 
( ) ( ) ( )

( )
( )( )

1 1

1 . .

ˆ ˆ ˆ1

ij ij ij

ij i j

i i i i i

W k W k W k

W k O

y y y y

λ δ

δ

+ = + ∆ +

∆ + =

= − −

  (7) 

 
with iδ  is search direction value of ith neuron of 
output layer (i= [1 → m]); Oj is the output value of jth 
neuron of hidden layer (j= [1 → q]); yi and ˆiy are 
truly real output and predicted output of ith neuron of 
output layer (i= [1 → m]), and 

 
( ) ( ) ( )

( )

( )
1

1 1

1 . .

1

jl jl jl

jl j l
m

j j j i ij
i

w k w k w k

w k u

O O W

λ δ

δ δ
=

+ = + ∆ +

∆ + =

= − ∑

  (8) 

 
in which jδ  is search direction value of jth neuron of 
hidden layer (j= [1 → q]); Oj is the output value of jth 
neuron of hidden layer (j= [1 → q]); ul is input of lth 
neuron of input layer (l= [1 → n]). 

These results of Eqs. (7) and (8) are demonstrated 
as follows in the case of sigmoid being the activating 
function of the hidden and output layers: 

Consider in the case of the output layer: 
 

Error to be minimized: ( )2

1

1 ˆ
2

m
i i

i
E y y

=
= −∑   (9) 

 
Using chain rule method, we have: 
 

ˆ
ˆ

i i
ij i i ij

y SE E
W y S W

∂ ∂∂ ∂=
∂ ∂ ∂ ∂

  (10) 

From Eq. (9), the following equation is derived. 
 

( )ˆ
ˆ i i
i

E y y
y

∂ = −
∂

  (11) 

 

With 
1

.
q

i ij j i
j

S W O bias
=

= +∑ as sum calculation at ith 

node of output layer and 1ˆ
1 i

i Sy
e−=

+
, it gives 

 

( ) ( )
( )

2
ˆ 1 1 1 11

111

ˆ ˆ1

i

iii

S
i

SSSi

i i

y e
S eee

y y

−

−−−

⎛ ⎞∂ + − −= = +⎜ ⎟∂ +⎝ ⎠++

= −

  (12) 

i
j

ij

S O
W
∂ =

∂
 (13) 

 
Replacing (11), (12), (13) to (10) and then putting 

all to (6), the following equation is derived. 
 

( ) ( ) ( )
( )

( )( )

1 1

1 . .

ˆ ˆ ˆ1

ij ij ij

ij i j

i i i i i

W k W k W k

W k O

y y y y

λ δ

δ

+ = + ∆ +

∆ + =

= − −

 (14) 

 
Eq. (7) for updating the weighting values of output 

layer has been demonstrated. 
The same way can be applied to demonstrate Eq. 

(8) for updating the weights of the hidden layer. 
 

3.3 Identification of PAM manipulator using auto-
regressive neural networks model  

The procedure executed to identify the PAM ma-
nipulator using autoregressive neural networks 
(RNN) model consists of four basic steps (Fig. 2(b)). 

In order to validate the models we apply the meas-
ure of closeness between the predicted outputs and 
the measured outputs, which is called the Error Index 
(EI). It is defined as the normalized mean square error 
of the residual (MSSE) given by 

 

( )
1

1 ˆ, ( ) ( )
2

ˆ( ) ( )

N TN
N

t
V Z y t y t

N

y t y t

θ θ

θ
=

⎡ ⎤= −⎣ ⎦

⎡ ⎤−⎣ ⎦

∑
 (15) 

 



 K. K. Ahn and H. P. H. Anh / Journal of Mechanical Science and Technology 22 (2008) 1287~1298 1291 
 

4. Experimental setup of PAM manipulator 

An experimental system of modeling and identifi-
cation of the PAM Manipulator based on autoregres-
sive neural networks model is illustrated in Fig. 3.  

Table 1 presents the configuration of the hardware 
set-up installed from Fig. 3 to model and identify the 
autoregressive neural networks model of the proto-
type PAM manipulator. 

The hardware includes an IBM compatible PC 
(Pentium 1.7GHz) which sends the PRBS voltage 
signal u(t) to control the proportional valve (FESTO, 
MPYE-5-1/8HF-710B), through a D/A board 
(ADVANTECH, PCI 1720 card) which changes a 
digital signal from a PC to analog voltage u(t). The 
rotating torque is generated by the pneumatic pressure 
difference supplied from an air-compressor between 
the antagonistic artificial muscles. Consequently, the 
joint of the PAM manipulator will be rotated. The 
joint angle, θ [deg], is detected by a rotary encoder 
(METRONIX, H40-8-3600ZO) and fed back to the 
computer through an 32-bit counter board (COM-
PUTING MEASUREMENT, PCI QUAD-4 card) 
which changes digital pulse signals to joint angle 
value y(t). The pneumatic line is conducted under a 
pressure of 5[bar] and the software is coded in C pro-
gram language. Experimental system of the prototype 
PAM manipulator is shown in Fig. 4. 

 
Table 1. Lists of the experimental hardware set-up. 
 
No. Name Model name Company 

1 Proportional valve MPYE-5-1/8HF-
710 B FESTO 

2 Pneumatic artifi-
cial muscle 

MAS-10-N-220-
AA-MCFK 

 

FESTO 
 

3 D/A board PCI 1720 ADVANTECH 

4 Counter board PCI QUAD-4 
 

COMPUTING 
MEASUREMENT

5 Rotary encoder H40-8-3600ZO METRONIX 
 
 

 
 
Fig. 3. Block diagram for obtaining PRBS training data of the 
1-Link PAM manipulator. 

  
Fig. 4. Experimental system of the prototype PAM manipulator. 

 

 
Fig. 5(a). Block diagram of the PAM manipulator autoregres-
sive neural networks NNARX model identification 

 
 
Fig. 5(b). Block diagram of the PAM manipulator autoregres-
sive neural NNARMAX model identification 

 
 
Fig. 5(c). Block diagram of the PAM manipulator autoregres-
sive neural networks NNOE model identification. 
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To obtain the experimental data that describe the 
underlying intrinsic features of the PAM manipulator, 
Figs. 5(a), 5(b), and 5(c) represent an experimental 
diagram for modeling and identifying the neural net-
work NNARX model, NNARMAX model and 
NNOE model of the prototype PAM manipulator. 

A series of experimental frequency responses by a 
pseudo-random binary signal (PRBS) is performed. A 
PRBS is easily derived as a random ordered maxi-
mum length sequence (m sequence) of logic one and 
zero, emanating from a specially configured m-stage 
linear feedback shift register, which repeats after a 
 

  
Fig. 6(a). Training data obtained from the prototype PAM 
manipulator 
 

  
Fig. 6(b). System response of the PAM manipulator for esti-
mation 
 

  
Fig. 6(c). System response of the PAM manipulator for vali-
dation. 

characteristic length L=2m -1. PRBS is deployed in the 
identification process with register length 8 and the 
bit magnitude is set to 50[%]± , which corresponds to 
the control voltage U input [v]. Fig. 6(a) presents the 
PRBS input applied to the tested PAM manipulator 
and the responding joint angle output collected from 
it. This experimental input-output data is used for 
training and validating the resulting nonlinear neural 
NNARMAX, NNOE and NNARX model, respec-
tively. 

PRBS input during the first 20 seconds and the cor-
responding PAM manipulator joint angle output will 
be used for training (Fig. 6(b)), while PRBS input 
during the consecutive 20 seconds and the corre-
sponding PAM manipulator joint angle output as well 
will be used for validation of the derived models (Fig. 
6(c)). 
 

5. Results of modeling and identification of the 
pam manipulator based on recurrent neu-
ral networks (RNN) model 

For comparison of the performance of three typical 
recurrent neural network models (NNARX, 
NNARMAX and NNOE), the following tests are 
performed. Two key parameters will be exploited to 
modify in these tests: the number of neurons of hid-
den layer (Nh) and the regressor vector (na, nb) of the 
identified recurrent neural network model. 

The 1st test carries on the modeling and identifica-
tion of the prototype PAM manipulator based on re-
current neural network model with the same configu-
ration (na=2, nb=2) of regressor vector for three dif-
ferent typical identified NN Models (NNARMAX, 
NNOE and NNARX Model). The hidden layer of all 
three NN models composes Nh=5 nodes; the training 
algorithm uses Levenberg-Marquardt (LM) training 
algorithm; the number of iterations in training process 
is 100; and the tangent hyperbolic function is used for 
training hidden nodes and linear functions for the 
output node. 

The comparison of the results concerning the struc-
ture of each type of neural network model, the con-
vergence of fitness values and the validation results 
that represent the performance in comparison be-
tween the real PAM manipulator output and predic-
tive NN Model output are shown in the following 
Figs. (7-9). The final values of weights of derived 
recurrent neural network models (NNARMAX, 
NNOE and NNARX Model) are tabulated in Tables 2,  
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Fig. 7. Fitness comparison of PAM manipulator recurrent NN 
models-(na=nb=2, hidden layer neurons=5). 

 

 

Fig. 8(a). Comparison of the Performance of PAM manipula-
tor RNN Models-(na=nb=2, hidden layer neurons=5). 

 

Fig. 8(b). Comparison of the Performance of PAM manipula-
tor RNN Models-(na=nb=2, hidden layer neurons=5).-
zooming (11.5-12) [s]. 
 

  
Fig. 9. Error index comparison of PAM manipulator recurrent 
NN models-(na=nb=2, hidden layer neurons=5). 

Table 2. The resultant weights of NNARMAX [222]-Number 
of Neurons of Hidden Layer=5. 
 

 wji – weights of Input Layer 

wj0 – 
weights 
of Bias 
Input 
Layer 

Wkj - 
weights 

of 
Hidden 
layer 

Wk 0 - 
weight
of Bias 
Hidden 
layer

i
j 

1 2 3 4 5 6 0 k=1 

1 1.5933 1.1423 -0.077533 -0.098761 0.66239 0.30528 0.29006 0.54993  

2 0.04827 -0.019418 -0.0011369 1.3063 -0.031017 0.0089411 -6.4596 29.049  

3 -1.1775 1.179 0.27982 -0.18217 -3.1622 -1.4819 -0.79763 -0.37933  

4 -0.037537 0.0062298 -0.0046332 1.6171 0.038212 0.0058295 -8.1336 -24.836  

5 -1.3992 -1.4091 0.035701 0.042099 0.1799 0.044579 0.20814 0.52862  

0         -2.3971

 
Table 3. The resultant weights of NNOE [22]-Number of 
Neurons of Hidden Layer=5. 
 

 wji – weights of Input Layer 

wji – 
weights of 
Bias Input 

Layer 

Wkj - 
weights 

of 
Hidden 
layer 

Wk 0 - 
weight
of Bias 
Hidden 
layer

i
j 

1 2 3 4 0 k=1 

1 -0.017735 -0.0053161 0.03395 -0.061219 0.73502 -33.388  

2 0.29148 -2.278 -3.483 -5.3051 0.063533 0.011513  

3 -0.19592 5.3639 -5.0743 -4.6359 0.798 
-

0.034125 
 

4 0.044934 -0.02249 0.015395 -0.021403 0.8468 36.01  

5 8.7972 -9.3037 2.4705 0.34974 -3.84 -0.11255  

0       -6.3391

 
Table 4. The resultant weights of NNARX [22]-number of 
neurons of hidden layer=5. 
 

 wji – weights of Input Layer 

wj0 – 

weights of 

Bias Input 

Layer 

Wkj – 

weights 

of Hidden 

layer 

Wk 0 – 

weight

of Bias 

Hidden 

layer 

i
j 

1 2 3 4 0 k=1 

1 -0.10642 0.046371 -0.00064929 -0.012132 -0.50756 -11.046  

2 0.10574 -0.043032 0.0006769 0.0015434 1.889 11.946  

3 -0.14947 0.070857 0.00056791 -0.0037848 0.55018 -5.3275  

4 0.71378 0.68853 1.958 1.4743 0.83636 -0.022563  

5 0.12626 -0.061261 0.0012602 0.0042962 -1.6276 12.762  

0       -2.7706

 
3 and 4, respectively. 

These figures indicate that both of the nonlinear 
NNARX and NNARMAX models excellently adapt 
the nonlinear joint of the PAM manipulator. The 
training LM algorithm forces the NNARX and 
NNARMAX models to converge quickly to the de-
sired recurrent NN model. Furthermore, when apply- 
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Fig. 10. Fitness comparison of PAM manipulator recurrent 
NN models-(na= nb=2, hidden layer neurons= 10). 
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Fig. 11(a). Comparison of performance of PAM manipulator 
RNN models-(na=nb=2, hidden layer neurons=10). 
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Fig. 11(b). Comparison of performance of PAM manipulator 
RNN models-(na=nb=2, hidden layer neurons=10). –zooming 
(11.5-12)[s]. 
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Fig. 12. Error index comparison of PAM manipulator recur-
rent NN models-(na= nb=2, hidden layer neurons=10). 
 
ing the recurrent neural network with only one hidden 
layer and regression vector n0 being 4 (nA=2; nB=2), 
it is adequate to choose Nh of about 5 to model per-
fectly the highly nonlinear PAM manipulator system. 
The error of the NNARX model proves quite superior 
( ≤ ± 0.1 [o]) in comparison with the error of 
NNARMAX model ( ≤ ± 0.2 [o]) and NNOE model 
( ≤ ± 2 [o]) respectively. 

The 2nd test continues the modeling and identifica-
tion of the PAM manipulator based on recurrent neu-
ral network model with the same configuration (na=2, 
nb=2) for three different typical NN Models 
(NNARMAX, NNOE and NNARX Model). It keeps 
all testing parameters like the first test except the hid-
den layer of all three NN models is composed of 10 
neurons. 

The comparison of the results concerning the struc-
ture of each NN Model, the convergence of fitness 
values and the performance of each autoregressive 
NN Model (NNARMAX, NNOE and NNARX 
model, respectively) are shown in following Figs.10-
12. The desired values of weights of identified recur-
rent neural network models (NNARMAX, NNOE 
and NNARX Model) are tabulated in Tables 5-7, 
respectively. 

These figures show that all three NN models with 
hidden nodes=10 seem to be no more performing than 
recurrent NN models with hidden nodes=5, except in 
the case of the NNOE model with its error decreased 
slightly from the range ± 2 [o] down to error only 
± 1.5 [o]. But this advantage will also increase the 
complexity of the NN model with hidden nodes=10, 
and the time cost of iteration calculation is consider-
able too. Especially, the NNARMAX model shows 
its intrinsic unstable feature in performance with its 
error increased considerably from the range ± 0.2 [o] 
up to error ± 1.5 [o] (see Fig. 12). Finally, the 
NNARX model always presents its stability and ro-
bustness as well in performance with its excellent 
error about the range ± 0.1 [o]. 
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Table 5. The resultant weights of NNARMAX [222]-Number 
of Neurons of Hidden Layer=10. 
 

 wji – weights of Input Layer 

wj0 – 
weights 
of Bias 
Input 
Layer 

Wkj - 
weights

of 
Hidden 
layer

Wk 0 - 
weight
of Bias 
Hidden 
layer

i 

j 
1 2 3 4 5 6 0 k = 1 

1 0.72663 0.13377 0.012863 0.58692 0.15361 0.2731 0.64082 0.39324  

2 0.41195 0.20713 0.38397 0.057581 0.67564 0.25477 0.19089 0.59153  

3 0.74457 0.6072 0.68312 0.36757 0.69921 0.8656 0.84387 0.11975  

4 0.26795 0.62989 0.092842 0.63145 0.72751 0.23235 0.1739 0.038129  

5 0.43992 0.37048 0.035338 0.71763 0.47838 0.80487 0.17079 0.4586  

6 0.93338 0.57515 0.6124 0.69267 0.55484 0.9084 0.9943 0.86987  

7 0.68333 0.45142 0.60854 0.084079 0.12105 0.23189 0.43979 0.93424  

8 0.21256 0.0438 0.0157 0.45436 0.45075 0.23931 0.34005 0.26445  

9 0.83924 0.02718 0.01635 0.44183 0.71588 0.049754 0.31422 0.1603  

10 0.62878 0.3126 0.19007 0.35325 0.89284 0.078384 0.36508 0.87286  

0         0.23788

 
Table 6. The resultant weights of NNOE [22]-Number of 
Neurons of Hidden Layer=10. 
 

 wji – weights of Input Layer 

wj0 – 
weights of 
Bias Input 

Layer 

Wkj - 
weights

of 
Hidden 
layer

Wk 0 - 
weight
of Bias 
Hidden 
layer

i 
j 

1 2 3 4 0 k=1 

1 -0.69267 -0.36791 0.2824 -0.15658 0.71697 4.2827  

2 0.13322 0.77958 -0.16679 0.24017 -1.5771 6.4621  

3 0.095898 -0.048686 -0.025256 0.027581 -1.3461 17.112  

4 0.064064 -0.011111 0.029743 -0.00489 -0.29273 10.051  

5 0.077398 -0.02563 -0.0088531 0.029734 0.92877 13.434  

6 0.022348 -0.10823 0.050773 -0.022695 -3.2899 -6.3698  

7 0.85714 -1.6286 0.061402 -0.41538 2.8898 2.1808  

8 -6.3943 6.0506 -2.1807 -2.2514 2.0539 -2.9559  

9 2.1908 -0.98621 0.58154 1.1495 1.287 0.059167  

10 -0.42182 1.0473 -2.7954 -2.0131 0.21064 -1.5541  

0       -4.8173

 
The 3rd test carries on the modeling and identifica-

tion of the PAM manipulator based on recurrent neu-
ral network model with the enhanced configuration of 
the regressor vector with (na=3, nb=3) for three differ-
ent typical NN Models (NNARMAX, NNOE and 
NNARX Model). It keeps all testing parameters like 
the first test, in which the number of hidden layers of 
all three NN models is composed of 5 neurons. 

The comparison of the results concerning the struc  

Table 7. The resultant weights of NNARX [22]-Number of 
Neurons of Hidden Layer=10. 

 

 wji – weights of Input Layer 

wj0 – 
weights of 
Bias Input 

Layer 

Wkj - 
weights 

of Hidden 
layer 

Wk 0 - weight
of Bias 

Hidden layer

i
j 

1 2 3 4 0 k=1 

1 -0.72704 0.81172 0.0023689 0.1321 -0.79062 -2.2253  

2 0.12761 -0.059445 -0.0052366 0.0081257 1.9943 11.926  

3 -9.3554 5.2622 1.452 -0.38085 0.69454 1.346  

4 -0.57795 0.71604 0.06393 0.13883 -0.72567 0.014649  

5 1.9306 -4.2412 2.3251 2.6809 -0.75147 -0.017308  

6 0.092419 -0.0185 -0.0024852 0.018127 0.69591 9.1417  

7 -0.12897 0.065599 -0.0017745 -0.0034485 1.4443 -14.49  

8 0.92971 -3.4956 -2.3707 -1.6243 -0.96512 -0.026785  

9 -0.74562 1.1762 6.0616 -4.0983 -2.1745 0.040718  

10 
-

0.011813
0.11366 -0.0081912 0.031332 -0.70877 5.0436  

0       -2.5828 

 
 

 
 
Fig. 13. Fitness comparison of PAM manipulator recurrent 
NN models - (na= nb=3, hidden layer neurons=5). 
 
 
ture of each NN Model, the convergence of fitness 
values and the performance in comparison between 
the real PAM manipulator output and predictive NN 
Model output are shown in following Figs.13-15. The 
desired values of weights of the resultant resulting 
recurrent neural network models (NNARMAX, 
NNOE and NNARX Model) are tabulated in Tables 
8-10, respectively. 
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Fig. 14(a). Comparison of performance of PAM manipulator 
RNN models-(na= nb=3, hidden neurons=5). 
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Fig. 14(b). Comparison of performance of PAM manipulator 
RNN models-(na= nb=3, hidden neurons=5). –zooming (11.5-
12)[s]. 
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Fig. 15. Error index comparison of PAM manipulator recur-
rent NN models-(na= nb=3, hidden layer neurons=5). 

Table 8. The resultant weights of NNARMAX [332]-Number 
of Neurons of Hidden Layer=5. 
 

 wji – weights of Input Layer 

wj0 – 
weights of 
Bias Input 

Layer 

Wkj - 
weights 

of Hidden 
layer 

Wk0 - weight
of  Bias 

Hidden layer

i
j 1 2 3 4 5 6 7 8 0 k=1 

1 0.073235 -0.065546 0.019716 0.00051002 -0.000716 0.000737 -0.021021 0.019427 -0.72404 31.271  

2 -0.080461 0.074298 -0.023716 -0.00083916 0.001191 -0.000988 0.032481 -0.018953 -1.0658 -27.1  

3 0.73051 -0.16857 -1.0695 1.8832 1.9522 1.8642 0.006482 -0.006229 -0.2027 0.3705  

4 -0.27002 0.12482 0.18328 0.20163 0.2622 0.37468 0.004534 -0.057232 0.12989 -2.496  

5 -0.17366 0.21145 -0.083757 -0.0082187 0.005681 -0.00637 0.29929 -0.10371 -0.20329 -3.784  

0           -0.866 

 
Table 9. The resultant weights of NNOE [33]-Number of 
Neurons of Hidden Layer=5. 
 

 wji – weights of Input Layer 
wj0 – weights 
of Bias Input 

Layer 

Wkj - weights 
of Hidden layer 

Wk 0  - weight
of Bias Hidden 

layer 
 i

j 
1 2 3 4 5 6 0 k=1 

1 -1.5763 -0.56234 -0.90904 -0.21587 0.10277 -0.37957 -0.16692 0.0507  

2 -0.07697 0.17284 -0.050859 -0.036657 0.088525 0.059495 -0.48761 12.988  

3 -0.0834 0.055679 -0.018797 -0.0057083 0.011438 0.010923 -1.4926 -17.04  

4 -0.15215 0.1962 -0.088276 -0.0055714 0.037663 0.00083909 0.99926 -17.807  

5 0.62579 0.12947 -0.79262 0.54398 -0.1079 0.033254 0.04395 1.3883  

0         -2.845 

 
Table 10. The resultant weights of NNARX [33]-Number of 
Neurons of Hidden Layer=5. 
 

 wji – weights of Input Layer 

wj0 – 
weights of 
Bias Input 

Layer 

Wkj –  
weights 

of Hidden 
layer 

Wk0 –  
weight 
of Bias  

Hidden layer
i

j 1 2 3 4 5 6 0 k=1 

1 -1.2199 -0.023401 1.4807 -0.21033 -0.17886 -0.55612 0.82492 0.079542  

2 -0.81913 -2.1201 -3.537 3.145 3.2615 3.2 0.25012 -0.023128  

3 0.042426 -0.020974 -0.0011577 0.00069379 0.00099087 0.0014491 -0.60445 39.236  

4 -0.92069 -0.084156 1.3435 -0.0030165 -0.0028313 0.12685 0.68571 0.02887  

5 0.023545 0.0095334 -0.010946 5.2208e-005 -0.00025608 0.0021564 0.79322 33.926  

0         -1.7687 

 
These figures show that increasing the size of the 

regression vector n0 being 6 (nA=3; nB=3) will only 
result in slightly better performance for both the 
NNARMAX and NNOE models in comparison with 
NNARMAX and NNOE models having (nA=2; 
nB=2). Furthermore, this attempt would highly in-
crease the complexity of the identified NN model and 
the time cost of iteration calculation would be enor-
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mous too. The error of the NNARX model always 
proves quite well and unchanged ( ≤ ± 0.1 [o]) in 
comparison with the error of NNARMAX model 
( ≤ ± 0.2 [o]) and NNOE model ( ≤ ± 1.5 [o]), which 
seem always worse than the NNARX model. These 
results determine the advantage of stability and ro-
bustness as well of the nonlinear neural network 
NNARX model. 

Important conclusive remarks can be derived. First, 
the nonlinear NNARX model always yields better 
performance, more stability and higher accuracy than 
the other nonlinear NNARMAX and NNOE model 
schemes. Second, increasing the number of neurons 
of the hidden layer from 5 to 10 will only improve the 
performance of the NNOE model; meanwhile, the 
NNARMAX model proves worse than NARMAX 
with the number of neurons of the hidden layer equal 
5. The perfect NNARX model with hidden layer 10 
nodes proved the same quality. Third, these results 
show that the NNARMAX and NNOE models with 
regression vector n0 being 6 (nA=3; nB=3) seem quite 
not better than in the case of the regression vector n0 
being 4 (nA=2; nB=2), whose quality is always worse 
than the corresponding NNARX model. Furthermore, 
this disadvantage will also be duplicated because of 
the complexity of such NNARMAX and NNOE 
models as well and because of the time cost of itera-
tion calculation, which is considerable too. Finally, all 
three autoregressive neural networks models, namely, 
NNARX-NNARMAX and NNOE demonstrate their 
superb performance in comparison with conventional 
MLPNN model and linear ARX model as well (see 
[6]). 

Consequently, the proposed auto-regressive neural 
networks models presented in this study, especially 
the NNARX model, can be applied in adaptive online 
control, predictive control with better dynamic prop-
erty and strong robustness. Furthermore, such NN 
models prove quite suitable for the identification of 
various plants, including linear and nonlinear proc-
esses without regard to greatly changing external 
environments. 
 

6. Conclusions 

In the paper, model-based identification is dis-
cussed with respect to neural networks as universal 
approximators yielding the possibility of modeling 
nonlinear autoregressive models with the exogenous 
variable. Neural networks utilized in modeling and 

identification of the PAM manipulator in this paper 
have overcome successfully the nonlinear characteris-
tics of the prototype PAM manipulator system, and 
the resulting recurrent neural network models would 
surely enhance the control performance of the PAM 
manipulator, due to the extraordinary capacity in 
learning nonlinear characteristics. The results show 
that the nonlinear NNARX model yields better per-
formance and higher accuracy than the other 
NNARMAX and NNOE model schemes. Finally, 
three proposed recurrent NN models (NNARX-
NNARMAX and NNOE) can be applied to model, 
identify and control not only of the PAM manipulator 
but also other nonlinear and time-varied parametric 
industrial systems. 
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Nomenclature----------------------------------------------------------- 

jδ  : Search direction value of jth neuron of hidden  
  layer (j=[1→q]) 

iδ  : Search direction value of ith neuron of output  
  layer (i=[1→ m]) 
λ  :  Learning rate 
θ  : The weighting set (=W) 
E  : Error to be minimized 
EN  :  Summed error of batch training mode with N  
  input-output samples 
Fi  : Activation function of ith neuron of the output  
  layer 
fj  :  Activation function of jth neuron of the hidden  
  layer 
K  :  Number of steps used to accumulate the error  
  values 
m  :  Number of neurons of output layer 
N  :  Number of input-output training samples 
n  :  Number of neurons of input layer 
na  :  The order of output y(z-1)  
nb  :  The order of input u(z-1) 
nk  :  The time delay (in this paper, nk = T =1) 
q  :  Number of neurons of hidden layer 
r  :  Ratio between predicted error and current  
  error 
Oj  :  The jth output from the hidden layer  
  (j=[1→q]) 
ul  :  The lth input to the input layer (l=[1→n]) 
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Wij  :  Weight from the jth neuron in the hidden layer  
  to the ith neuron of the output layer 
wjl  :  Weight from the lth neuron in the input layer  
  to the jth neuron of the hidden layer 
yi  :  The ith output from the output layer  
  (i=[1→m]) 
ˆiy   :  The ith predicted output from the output layer  

  (i=[1→m]) 
zl  :  The lth output from the input layer (in this  
  paper, ul = zl.) 
ZN  :  The training set with N input-output samples 
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